Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Guido Kickelbick,* Frank Stöhr and Ulrich Schubert

Institut für Materialchemie, Technische Universität Wien, Getreidemarkt 9/165, A-1060 Wien, Austria

Correspondence e-mail:
kickelgu@mail.zserv.tuwien.ac.at

Key indicators

Single-crystal X-ray study
$T=213 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
H-atom completeness 73\%
Disorder in main residue
R factor $=0.027$
$w R$ factor $=0.073$
Data-to-parameter ratio $=22.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Chloromethyl $\left(\boldsymbol{\eta}^{4}\right.$-norbornadiene) platinum(II), an unsymmetrical substituted precursor for $\mathrm{Pt}^{\prime \prime}$ complexes

The title compound, $\left[\mathrm{PtCl}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)\right]$ or $[(\mathrm{nbd}) \mathrm{PtClMe}]$ (nbd is norbornadiene), was formed in a partial substitution reaction of $\operatorname{dichloro}\left(\eta^{4}\right.$-norbornadiene) platinum(II). The Pt atom exhibits tetrahedral coordination, involving the two $\eta^{2}-\pi$ bonds to the norbornadiene, one chlorine and one methyl substituent. Probably as a result of the symmetry of the norbornadiene and the approximately equal size of the methyl and chlorine substituents, these two substituents are disordered and have been refined, each with half-occupancy.

Comment

Olefinic coordination compounds of platinum are often used as precursors for other complexes, due to the easy substitution of the olefin by other ligands. One of the most prominent examples of such a precursor is dichloro (η^{4}-cycloocta-1,5diene)platinum, $\left[(\mathrm{COD}) \mathrm{PtCl}_{2}\right]$. Another important olefinic ligand is norbornadiene (nbd), whose chemical behavior is quite similar to that of cyclooctadiene.

(I)

The title complex, (I), has $\mathrm{Pt}-\mathrm{C}$ distances to the olefinic C atoms of 2.191 (6), 2.195 (6), 2.210 (5) and 2.218 (5) \AA, indicating a nearly symmetrical bonding situation. Elemental analysis and NMR studies showed that the product of the reaction had both a chlorine and a methyl substituent. However, the methyl and chlorine substituents occupy the same coordination sites and, accordingly, the positions were refined with a half-occupation model. The distances of these substituents were found to be $2.245(2)(\mathrm{Pt}-\mathrm{Cl} 1 / \mathrm{C} 1 A)$ and 2.294 (2) $\AA(\mathrm{Pt}-\mathrm{Cl} 2 / \mathrm{C} 2 A)$. These values lie between the $\mathrm{Pt}-$ Cl distances in the related $\left[(\mathrm{COD}) \mathrm{PtCl}_{2}\right.$] complex $[\mathrm{Pt}-\mathrm{Cl}$ 2.315 (1) and 2.309 (1) \AA; Syed et al., 1984], and those of di-methyl-substituted COD complexes [2.056(6) and 2.069 (6) Å; Smith et al., 2000]. The difference between the $\mathrm{Pt}-\mathrm{Cl}$ and $\mathrm{Pt}-\mathrm{Me}$ distances can be estimated from the structure of an asymmetrically substituted [(COD)PtMeCl] complex. In this compound, the $\mathrm{Pt}-\mathrm{C}$ distance was found to be 2.164 (8) \AA, while the $\mathrm{Pt}-\mathrm{Cl}$ bond length was 2.330 (2) \AA (Klein et al., 1999). Hence, the difference between the distances is approximately $0.166 \AA$ and should be similar in the title complex, if it were not disordered.

The $\mathrm{Cl} 1 / \mathrm{C} 1 A-\mathrm{Pt}-\mathrm{Cl} 2 / \mathrm{C} 2 A$ angle is 86.31 (9) ${ }^{\circ}$ and thus more similar to the $\mathrm{Me}-\mathrm{Pt}-\mathrm{Me}$ angle in [(COD) PtMe_{2}]

Received 19 June 2002
Accepted 28 June 2002
Online 5 July 2002
[85.9 (3) ${ }^{\circ}$; Smith et al., 2000] or [(COD)PtMeCl] [85.6 (3) ${ }^{\circ}$; Klein et al.,1999] than to the [(COD) $\left.\mathrm{PtCl}_{2}\right]$ complex [89.78 (5) ${ }^{\circ}$; Syed et al., 1984]. The so-called bite angle of the nbd ligand is much smaller $\left(71.15^{\circ}\right.$ is the average $\mathrm{C}-\mathrm{Pt}-\mathrm{C}$ angle) than the angle for the COD ligand (on average around 86°) (Klein et al., 1999).

Experimental

The title complex was prepared according to a modified reaction procedure for the synthesis of (COD) PtMeCl (Dekker et al., 1992).

Crystal data

$\left[\mathrm{PtCl}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)\right]$
$M_{r}=337.72$
Monoclinic, $C 2 / c$
$a=13.0526$ (7) \AA
$b=11.8020$ (6) \AA
$c=12.6014$ (6) \AA
$\beta=120.636(1)^{\circ}$
$V=1670.25(15) \AA^{3}$
$Z=8$

$$
\begin{aligned}
& D_{x}=2.662 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4347 \\
& \quad \text { reflections } \\
& \theta=2.5-28.3^{\circ} \\
& \mu=17.04 \mathrm{~mm}^{-1} \\
& T=213(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.52 \times 0.16 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector	2062 independent reflections
\quad diffractometer	1910 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.036$
Absorption correction: multi-scan	$\theta_{\max }=28.3^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$h=-17 \rightarrow 17$
$T_{\min }=0.041, T_{\max }=0.281$	$k=-15 \rightarrow 13$
5677 measured reflections	$l=-16 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.073$
$S=1.07$
2062 reflections
92 parameters
H -atom parameters constrained

Figure 1
The molecular structure of the title complex, with atom labels and 50% probability ellipsoids for the non-H atoms.
not included in the refinement. The highest and lowest final difference electron density occurred at 0.87 and $0.96 \AA$, respectively, from the Pt atom.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.

References

Bruker (1997). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.
Bruker (1998). SHELXTL. Version 5.1. Bruker AXS GmbH, Karlsruhe, Germany.
Dekker, G. P. C. M., Buijs, A., Elsevier, C. J., Vrieze, K., van Leeuwen, P. W. N. M., Smeets, W. J. J., Spek, A. L., Wang, Y. F. \& Stam, C. H. (1992). Organometallics, 11, 1937-1938.
Klein, A., Klinkhammer, K.-W. \& Scheiring, T. (1999). J. Organomet. Chem. 592, 128-135.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smith, D. C. Jr, Haar, C. M., Stevens, E. D., Nolan, S. P., Marshall, W. J. \& Moloy, K. G. (2000). Organometallics, 19, 1427-1433.
Syed, A., Stevens, E. D. \& Cruz, S. G. (1984). Inorg. Chem. 23, 3673-3674.

